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This paper deals with the modelling and analysis of a new solution for a  
three-phase AC transformer with electromagnetic and electric coupling  
(hybrid coupling). The electromagnetic coupling is realized by means of  
the conventional three-phase transformer (TR) with two secondary wind-
ings in each phase.  The electrical  coupling  is  realized by means of  a  
three-phase  matrix-reactance  chopper  (MRC) with Ćuk topology.  This  
paper presents an operational description, a modelling and a theoretical  
analysis of the properties of the proposed solution. The steady-state ana-
lysis is based on the averaged state-space method, D-Q transformation  
and four terminal descriptions, and is verified by the simulation investig-
ations.  Dynamics  analysis  is  based  on  Laplace’s  transformation  and  
small signal model, and is verified by the simulation investigations.

1 INTRODUCTION
The defining quality parameters of electric energy are well known, and described in 

[1]. The dynamic states in alternating current (AC) power transmitting system, such as 
fault  switching effects, dynamic load changes, or  atmospheric discharge on the con-
sumer side generate undesirable effects such as voltage sags, interruptions and swells. 
Poor quality electrical energy has a negative effect on sensitive devices. In computers, 
transceiver devices, medical systems, production line, electric motors supplied from fre-
quency converters, erratic supply parameters cause failure or defective devices [2]–[5]. 
In the case of industrial customers, voltage perturbation in supply voltage may cause 
very large financial damage [6].

Secondary supply sources, such as constant-voltage regulators or voltage sag com-
pensators, attenuate the unwanted effects of supply [7]–[15]. The conventional solution 
for AC voltage regulators are based on a classic electric transformer with mechanical or 
thyristor tap changer. These devices have disadvantages, which are described in [16]. 
The  application of  AC-AC converters  using pulse  width modulation (PWM) control 
strategy to construct secondary supply sources eliminates disadvantages of conventional 
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AC voltage regulators. The devices described in [7]–[9], [11], [13], [14] and [15] guar-
antee fast changing output voltages and satisfactory dynamic properties. The fundament-
al  disadvantage of these solutions is lack of galvanic separation between source and 
load. This property is very important from the point of view of an AC distribution sys-
tem. The conception of a single-phase new generation distribution transformer is presen-
ted in [13], where a conventional transformer works together with a unipolar matrix con-
verter. A more thorough analysis of such a solution is presented in [17] and is developed 
by using matrix-reactance choppers in [18] and [19].

The presented solution has two couplings (hybrid coupling), an electromagnetic one 
realized by means of conventional transformer and an electric one realized by means of 
a  matrix-reactance  chopper,  and is  therefore  called  a  hybrid transformer  (HT).  The 
three-phase HT using matrix converter is described in [20]. This paper develops the con-
ception of a three-phase HT by using a matrix-reactance chopper with Ćuk topology. In 
this paper, there is an operational description, modelling and a theoretical analysis of the 
static and dynamic properties of the proposed solution. 

2 DESCRIPTION OF THE PROPOSED SOLUTION
The schematic diagram of the proposed solution of hybrid transformer is shown in 

Fig. 1.
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Fig.1. Three-phase hybrid transformer using MRC with Ćuk topology

As is visible in Fig. 1 the circuit of the considered HT contains two main units. The 
first one is a three-phase conventional transformer (TR), the second one is a three phase 
matrix-reactance chopper (MRC) with Ćuk topology [21]. The transformer has two sec-
ondary windings in each phase. Primary windings are Y-connection. The main second-
ary windings of TR (a1, a2, a3) also have Y-configuration, and they are connected with 
MRC. Secondary phase windings (b1, b2, b3) are connected in series with phase output 



connectors of the MRC respectively. Secondary voltages of the windings a1, a2 and a3, 
have opposite phase in relation to secondary voltages of the windings b1, b2 and b3. Out-
put voltages of the MRC (uCFL1, uCFL2, uCFL3) are shifted in phase about π in relation to 
voltages pbuS1, pbuS2, and pbuS3. Therefore output voltages of the presented HT are an al-
gebraic sum of the output voltages of MRC (uCFL1, uCFL2, uCFL3), and secondary voltages 
of TR (pauS1, pauS2, pauS3). Transformer voltage ratios of the windings a and b are pa=4/3 
and pb=2/3 respectively. These values are the same as in [13], [17], [18], [19] and [20]. 
Exemplary idealized voltage time waveforms illustrating operation of the presented HT 
are shown in Fig. 2.
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Fig.2. Control signal and idealized voltage time waveforms in circuit of HT,
 D < 0.5, f = 500 Hz

The duty factor of the control signal of the MRC switches is expressed as:

S
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T
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The output voltages of the MRC (uCFL) with Ćuk topology and output voltages of the 
considered HT (uL) shown in complex form by means of an idealized equation are de-
scribed by (2) and (3) respectively.
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According to (2) the idealized transmittance of the MRC with Ćuk topology can be writ-
ten as:
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According to (3) the idealized voltage transmittance of the presented HT can be de-
scribed as:
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The graphical interpretation of (3) and (4) is shown in Fig.3.
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Fig.3. Idealized characteristics of the MRC and HT voltage transmittances as a function D

As is visible from Fig. 3, the output voltage of the HT is less than the source voltage for 
0 ≤ D ≤ 0.2. For 0.2 < D < 1, the output voltage of the presented HT is greater than the 
supply voltage.

3 THEORETICAL ANALYSIS

3.1 Averaged model of HT
An equivalent schematic diagram of the presented HT (Fig. 1) with ideal switches is 

shown in Fig. 4.
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Fig.4. Equivalent schematic diagram of the HT with ideal switches

Theoretical analysis is based on the averaged state-space method [21], [22], and d-q 
transformation method [23]. In the considered circuit, there are two operating states. In 
the on-state of the MRC the switches S1, S2, S3 are turned on and S4, S5, S6 are turned 
off. In the off-state of the MRC the switches S4, S5, S6 are turned on and S1, S2, S3 are 
turned off. Schematic diagrams for both operating states are shown in Fig. 5.
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Fig.5. Schematic diagrams of the presented HT, a) for on-state, b) for off-state

For the schematic diagram shown in Fig. 4, the averaged state-space equation can be 
written as:
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where  [ ]T
CFLFLCcFS uiui=x - vector of the averaged  variables,  A(D) – averaged 

state matrix, B(D) – averaged input matrix, C(D) – averaged output matrix, D(D) – av-
eraged  input-output  matrix.  Assumed  symmetrical  circuit,  LFS1=LFS2=LFS3=LFS, 
CC1=CC2=CC3=CC,  LFL1=LFL2=LFL3=LFL,  CFL1=CFL2=CFL3=CFL,  averaged  matrixes  can  by 
written as:
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Luy = , [ ]1000)( == CC D , [ ]apD == DD )( . (9)
From equations, (6) – (9) we can easily obtain the three-phase averaged circuit model 
(Fig. 6).
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Fig.6 Averaged circuit model of the considered HT

3.2 D-Q transformation of the averaged model of HT
For analysis, the three-phase averaged circuit model (Fig. 6) is transferred to d-q co-

ordinate system. The d-q transformation is defined as [23]:
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where  xq –  forward (rotating) phasor,  xd – backward (rotating) phasor,  x0 –  zero-se-
quence component.

The phase source voltages with angular speed ω are assumed ideal and symmetrical 
and are described by (13).
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Secondary voltages of TR take into account transformer voltage ratio pa and pb, and are 
described by (14) and (15) respectively.
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The d-q transformation of the secondary voltages of TR (Fig. 4) is described as (16) and 
(17) [24].
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where φ1 is an initial angle of voltage phase shift.
The equations (18) – (21) described the d-q transformation of three-phase inductor set 
LFS of the MRC.

LFSLFSL ui = , (18)

Substituting iLFS (19), and according to (10) and taking the derivative (18) becomes (20)
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where φ2 is the initial angel of the current phase shift.
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Arranging and solving equation (16) we obtain:

( ) 000
1

0

000

001

010

LFSqdLFSqdLFSLFSqdLFSqd LLL uiKuiKKi +



















−−=+−= − ω (21)

By the same method, the three-phase output inductor set LFL of the MRC is transformed 
to a d-q coordinate system. Schematic diagrams of inductances LFS and LFL before and 
after d-q transformation are shown in Figs. 7c and 7d [24].

The equations (22) – (23) describe the d-q transformation of capacitances CC of the 
MRC.

CcCcCC iu = . (22)

Considering uCc in accordance with (10) and taking the derivative (22), we obtain (23).
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Solving equation (23) we obtain:
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By the same method, three-phase output capacitor set CLF of MRC is transformed to a d-
q coordinate system. Schematic diagrams of capacitances CC and CFL before and after d-
q transformation are shown in Figs. 7e and 7f.

As is visible on Fig. 6 there are two sections of switches, described as an ideal trans-
former (1-D):1 and 1:D. The d-q transformation of these transformers is described by 
(24) – (27). Transformation of source switches is written as:

( )DIuu −= 1Cc , (24)

The equation (24) is transformed to a d-q coordinate system and then can be described 
by (25).
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Fig.7. The schematic diagrams before and after d-q transformation, a), b) secondary voltages with trans-
former voltage ratio pa and pb of TR, c) input inductances of the MRC, d) output inductance of the MRC,
 e) capacitances of the MRC, f) output filter capacitances, g), h) source and load switches of the MRC, i)  
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Transformation of load switches is written as:

Duu Cc=1 . (26)

The equation (26) is transformed to a d-q coordinate system and then can be described 
by (27)
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Schematic diagrams before and after a d-q transformation of the switches of the MRC 
are shown in Figs. 7g and 7h.

The d-q transformation of load resistance is described as:

000 LqdLLqdLLLqd RR iiKKuu === . (28)

Schematic diagrams before and after a d-q transformation of load resistance is shown in 
Fig. 7i.

The steady state characteristic can be obtained by considering the single-phase d-q 
transformed circuit of the presented HT. The d-q transformed schematic diagrams of the 
considered HT for backward and forward component are shown in Fig. 15.
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Assuming a symmetrical and balanced circuit of the HT and conditions described by 
(29) we obtain a circuit only for forward (rotating) phasor component (30).

01 =ϕ . (29)
According to (10) and taking into account (29), d-q transformed source voltages are de-
scribed as:
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According to (30) a d-q transformed schematic diagram of the presented HT for steady 
state analysis (DC model) is divided into four terminal networks and is shown in Fig. 16.
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Taking into account  pa and  pb such as voltage transformer ratio secondary windings a 
and  b respectively (Fig.1), the four-terminal chain equations are described as (31)  – 
(34).
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Fig.17. Substitute diagram four-terminal networks connections of the considered HT
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where G = Ga+GaCL.
The parameters of the Gb and GaCL, there are four-terminal hybrid parameters, which are 
shown in the appendix in table I and II. In accordance with four terminal theories, we 
obtain:
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The characteristics of magnitude and phase of the voltage transmittance and input 
power factor obtained by means of (36) – (38) for circuit parameters collected in the 
Tab. III are shown in section four. For purpose of comparison, these characteristics are 
presented  together  with ones  obtained  by means of  simulation  investigations  of  the 
presented circuit with idealized switches (Fig. 4).

3.3 Small signal model of HT
It is assumed that all variables have two components: a running constant component 

(the averaged value in the switching period  TS), which is marked by upper case letter, 
and perturbation marked by lower case letter, straddled by the symbol “^”.
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On the basis of the averaged state space method the small signal state space equations 
are expressed as [22]:

( ) ( ) ( )[ ]d
dt
d ˆˆˆˆ 2121 UBBXAAuBxAxX −+−++≈+ , (40)

where A1 = A(D) for D = 0, A2 = A(D) for D = 1. According to (35), the Laplace trans-
form for small signal state-space equation is expressed as (41) and (42):
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Solving equations (36) and (37) we obtain:
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where:
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The dependencies (45) – (48) are shown in the appendix in table IV. The calculation and 
simulation test results of the transient states of the considered HT are shown in the next 
section.

4 SIMULATION TEST RESULTS
The parameters of the investigated circuit (Fig. 1) are the same as the ones in the the-

oretical analysis and are given in the appendix in table III.  The presented results have 
been obtained for load matching conditions described by (59).

L
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C
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== . (59)

Exemplary simulation time waveforms of load voltage uL of the presented HT, for differ-
ent value of pulse duty factor D, are shown in Fig. 18.
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Fig.18. Exemplary simulation time waveforms of load voltage of presented HT for different 
value D

The characteristics of magnitude (36) and phase of voltage transmittance (37), as a func-
tion of duty pulse factor D, are shown in Figs. 19a and 19b respectively. Characteristic 
of input power factor as a function of duty pulse factor D is shown in Fig. 19c.
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Fig.19 Static characteristics of a) magnitude b) phase of voltage transmittance c) input power  
factor of the presented HT as a function D

As is visible in Figs 18 and 19a, the output voltage of the presented HT (uL) is de-
pendent on the value of duty pulse factor D. The output voltage uL is less or approxim-
ately equal to the source voltage uS for D ≤ 0.2. The output voltage is greater than the 
source voltage for  D > 0.2. In the considered HT the range of change of the output 
voltage uL is from 0.66uS to more than 2.5uS (Figs 18 and 19a).The phase shift between 
source voltage uS and load voltage uL occurring for the value of duty factor D is because 
of resonance phenomena in MRC circuit [21].
The calculation and simulation test results of transient states of considered HT at 50 % 
step-up and 50 % step-down of supply voltage uS with duty factor D = 0.25 is shown in 
Figs. 21 and 22 respectively.
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Fig.21 Transient states of HT at 50% step-up of supply voltage where D = 0.25
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Fig.22. Transient states of HT at 50% step-down of supply voltage where D = 0.25

A is visible from Figs 21 and 22, calculation and simulation test results converge.

5 CONCLUSIONS
In this paper a new solution for a three-phase hybrid transformer using matrix-react-

ance chopper with Ćuk topology has been presented. The proposed solution of HT satis-
fies both favourable effective number of switches and voltage transforming properties. 
In the presented HT the possibility of obtaining the range of change of the load voltage 
from 0.66  to  more then 2.5  of  source voltage has been shown. The nominal output 
voltage can be obtained even at 50% step-down or step-up of the source voltage. The 
simulation test results have confirmed the results of theoretical results. Further research 
will be focused on construct experimental model to verify both simulation and calcula-
tion results, and to decrease oscillation during step-up and step-down of supply voltage.



6 APPENDIX
Table I

Gb11 0
Gb12 1/pb

Gb21 pb

Gb22 0
Table II
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Table III
symbol value
uS 3 x 400 V / 50 Hz
pa 4/3
pb 2/3
LS 1 mH
C 10 μF
LL 1 mH
CL 10 μF
ZL 10 Ω
fS 5 kHz
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