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MODELLING AND ANALYSIS OF MATRIX-REAC-
TANCE FREQUENCY CONVERTER BASED ON
CUK TOPOLOGY BY DQ0 TRANSFORMATION

This paper deals with a three-phase direct matrix-reactance frequency
converter (MRFC) with Cuk topology and includes a description of its
topology and operation plus presentation of the results of an investiga-
tion of its properties. The static and dynamic characteristics of the pre-
sented converter under the control strategy proposed by Venturini are
fully analysed based on the basis of the circuit models development by the
circuit DQO transformation. Various static converter characteristics such
as voltage and current gain, phase of voltage transmittance and power
factor are completely analysed. Transition characteristics are also anal-
ysed by a small-signal model. The usefulness of the models is verified
through computer simulations with good agreements.

1 INTRODUCTION

In recent years, the direct matrix converters have received considerable attention as a
competitor to the normally-used pulse width-modulated voltage-source inverter (PWM-
VSI). The real development of MC starts with work of [1]. As it is well known, the MC,
compared to the PWM-VSI with diode rectification stage at the input provides sinu-
soidal input and output waveforms, bidirectional power flow, controllable input power
factor, and more compact design [1]-[6]. One disadvantage of the MC is the voltage
transfer ratio, which is limited to 0.5 of the input voltage [1] at linear voltage transfor-
mation, and to 0.866 or 1.053 at low-frequency load voltage deformations for space-vec-
tor or fictitious DC link control strategy concepts respectively [2]-[6]. In research [7]
and [8] the general conception of a three-phase direct MRFC with buck-boost output
voltage is presented, whereas in research [9] and [10], the conception of MRFC with
Cuk topology was presented. The topology of this MRFC is based on matrix reactance
choppers (MRC) with load switches arranged as in MC. Such an approach gives the pos-
sibility to obtain a load output voltage greater than the input one.

In this paper we obtained the analytic expressions for the voltage and current gain,
input power factor and phase of voltage transmittance of the MRFC based with Cuk
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topology, using DQO transformation technique [11]-[14]. By applying the circuit DQO
transformation, the three-phase-balanced MRFC is transformed into a simple single-
phase circuit that does not contain a switch element. The switches are transformed to
equivalent transformers whereas voltage sources and passive components are trans-
formed into equivalent components.

2 DESCRIPTION OF PRESENTED SOLUTION

The schematic diagram of the main circuit of the presented MRFC is shown in
Fig. 1a [9], [10]. In this circuit a three-phase Cuk MRC with load switches arranged as
in MC is used. A description of the control strategy of the MRFC, in general form, is il-
lustrated in Fig. 1b. In each switching period T, in the time #s (switching time of the
source switches Sy, where j={a, b, c} is the name of the output phase, ~={A, B, C} is the
name of the input phase), 3 of 9 matrix switches, Su, Sw, Se, are simultaneously closed
and all source switches Sgi, S, Ss; are closed at the same time. In time ¢, load switches
Ss1, Ss2, Ss3 are opened and all matrix switches are closed. A simplified view of the con-
trol strategy realization is depicted in Fig. lc.
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Fig. 1. The MRFC with Cuk topology a) schematic diagram of main circuit, b) general form of
control strategy description, c) exemplary time waveforms of the control signals for switches in
one phase

Let the state function of the source switches be defined as (1) and assume that al-
lowed constraints of the source switches in the time #s is expressed by (2), only 27 out of
2° work states of these switches are valid in this time #;, similarly as in the MC [1]-[6].
In a full switching period, in the time 7§, (27+1) work states can occur in the presented
circuit.
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Furthermore, on the basis of a classical control strategy [1] attributable to Venturini, as-
sume that there will be realized a control strategy making allowances for changes in the
pulse duty factor of the source switch state function s; expressed by:

o 1+ 2qc0s(a) mt) 1+ 2qcos(wmt- 2 /3)1+ 2qc0s(wmt- 4n /3)D
- 5ngn 2qcoslo i~ 41 /3) 1+ 2qcoslw 1) 1+ 2qcoslw, - 21 /35, (3)
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where D=d+dxtd,=ts/Ts is the summarized pulse duty factor, ¢ = U,./Us - voltage
gain of the source switches set Sy (0 < g <0.5), o, = w—ws - setting value of difference
between pulsations of the output and supply voltages.

3 CIRCUIT DQO0 TRANSFORMATION

Sinusoidal time-varying systems can be changed to time-invariant system by the DQO
transformation [11]-[14]. The DQO transformation of the variables is given as follows:
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where: X =[Xa, Xp, Xe] ", Xga=[X Xay Xo]", x,~ forward (roating) phasor, x,~- backwadr (roat-
ing) phasor, x,- zero-sequence component.
The circuit DQO transformation is obtained by the following procedures:
1) Partition of the circuit into basic subcircuits.
2) Transformation of each of the subcircuits into DQO equivalent circuits based on
the DQO transformation equations
3) Reconstruction of the transformed subcircuits by connecting the nodes of adja-
cent subcircuits.

We can divide the presented MRFC based on Cuk topology depicted in Fig.1 into
several fundamental subcircuits along the dotted lines indicated in Fig.2. After partition-
ing, we obtain eight subscircuits. As in the presented topology, there are two input and
output work frequencies, we also have two transform matrix Ky and K, expressed by (6)
and (7) [15], [16].
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Fig. 2. Partitioning of MRFC for DQO transforms

For three-phase balanced voltage sources set (Part A), the DQO transformation pro-
cedure is as follows:
5 0 sin(we¢,) 0O DOsing, 0
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U0

where us is the vector of the voltage sources. Thus, the DQO transformed circuits of
voltage sources set is shown in Fig. 3a.

Using basic principles from circuit theory, the source and load inductors (Part B and
Part F) are modelled by equation (9) and (10):
LFiLFabc = uLFabc > (9) LSiLSabc = uLSabc > (10)
where Lp=Lpn=Lp=Lr, Ls=Ls;=Ls;=Ls. Application of (4)-(7) to (9) and (10) the DQO
transform of inductors can be formulated as:
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The circuit models are shown in Fig. 3b and Fig. 3c. The DQO “inductor” by real dy-
namic inductor Lr (Ls) in series with an imaginary static reactor tjwgLr (£jw,Ls) is repre-
sented. Since the voltage and current of the static reactor obeys Ohm’s law, the reactor is
replaced by a lossless resistor symbol.



For the source and load capacitors circuit (Part D and Part G), the differential equa-
tions are in the following form:

CF Ucrabe = iCFabC > (15) CL UcLabe = iCLabc d (16)

where Cp=Cp=Cp=Cp C.,=C,=C;s=C,. Taking into account expressions (4)-(7) and
(15), (16) the DQO transform of source and load capacitors is defined as follows:
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The DQO transformed circuit of source and load capacitors sets are shown in Fig. 3d
and Fig. 3e, respectively. Similar as with inductors, the DQO “capacitors” are represent-
ed by real dynamic capacitors Cr and C; parallel with an imaginary static reactors
il/(jCOsCF), and il/(jCOLCL).

Assuming that, R;1=R;»=R;3=R,, the procedure of DQO transform of the resistor set
(Part H) is as follows (Fig. 3f):
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If, the switching function of source switches (Part C) are defined by (22), then the
DQO transform of this switches is described as (23) (Fig. 3h):
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Fig. 3. DQO transformation of: a) source voltages, b) source inductors, c¢) load inductors,
d) source capacitors, e) load capacitors, f) load resistors, g) matrix switches, h) sources switches



If, the switching function of matrix switches is defined by (3) then the DQO transfor-
mation of the nine-switch matrix (Part E) is given as follows [15]-[16] (Fig. 3g):

uSqu = KSuSubc = KSDUh(’uLuhL = KSDuchLqudO = quﬂqudO . (24)
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The equivalent DQO circuit models of the presented MRFC witch Cuk topology
(Fig. 1) are obtained as shown in Fig. 4 by rejoining of the DQO transformed subcircuits.
Therefore, the three-phase circuit in Fig. 1 can be represented by three single-phase sub-
circuits for forward, backward and zero-sequence component.
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Fig. 4. DQO transformation of three phase MRFC based on Cuk topology, a) forward sequence
component, b) backward sequence component, c) zero-sequence component

Furthermore, assuming that initial phase of input voltages equal zero ¢,=0 and sym-
metrical balanced three-phase circuit we obtain [11]-[16]:

000
0,0
solp- (26)

F05
The equivalent circuits have been simplified from three circuits to one circuit, which is
shown in Fig. 5.
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Fig. 5. DQO transformation of three phase MRFC based on Cuk topology (Fig. 1) for ¢,=0, and
balanced-symmetrical circuit condition



4 STEADY STATE ANALYSIS

The steady state model is obtained simply by eliminating the reactive elements. The
inductors seem to be short and capacitors open, shown in Fig. 6. The steady state char-
acteristics can be obtained by considering the circuit model of the presented MRFC. For
steady state analysis a single-phase circuit model is divided into four terminal networks
(Fig. 6) [8], [17]. With reference to Fig. 6 four-terminal chain equations in complex
form can be written as (27)-(32).

Fig. 6. Steady state equivalent circuit for MRFC with Cuk topology; A.r Ais chain matrix for the
source and load inductors respectively, Arri, Arr: chain matrix for source and load transformer
respectively, Acr, Aci chain matrix for the source and load capacitors respectively
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Applying the four-terminal network description method [8], [17], [18] we obtain:
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The characteristics of magnitude and phase of voltage transmittance, current trans-
mittance, and input power factor as functions of the load voltage setting frequency and
summarized pulse duty factor D;, obtained by means of (35)-(38) are shown in Fig. 7.
Circuit parameters are as follows: Us -230V/50Hz, f,=5kHz, {Lp-Lr, Lsi-Ls3}-2mH,
{Crn-Cp, Cp1-Ci3}-20uF, R,=10Q. For purpose of comparison these characteristics are
presented together with ones obtained by means of simulation investigations of the pre-
sented circuit with idealized switches (Fig. 1). The presented results have been obtained

for matching conditions R,=Ly/C,=,/L,/C, [8].

As is visible from Fig. 7 properties of the MRFC are strongly dependent on parame-
ters of the passive elements of the discussed circuit. The presented MRFC has the ad-
vantageous properties in comparison with the MRFC based on buck-boost and Zeta
topology [10]. It has smaller “dispersion” of characteristics as a function of load voltage
setting frequency. All characteristics almost ideally coincide for different frequencies of
load voltage.

a) |ﬂb|[V/V] Teulaton Shmalation argl [ rad ‘ ‘ ‘ ‘ = ;Z(s]:;
sk - _| == f-75H
2
N
1
D;
0% 0.2 0.6 0.8 |
c) I I g
16 |t |asAl - \
1.2 ‘/
/e
0.8 / \=
\\
0.4 )
/ 2l “IIA \
D;
0 0 0.2 0.4 0.6 0.8 1 0 0 0.2 0.4 0.6 0.8 - 1

Fig. 7. Steady state characteristics of MRPC based on Cuk topology as a functions of the load
voltage setting frequency and summarized pulse duty factor D;: a) magnitude of voltage transmit-
tance, b) phase of voltage transmittance, c) magnitude of current transmittance, d) input power
factor



5 TRANSIENT-STATE ANALYSIS

The equivalent circuit of transient-state is shown in Fig. 5.
The steady-state averaged state-space equation is described as [19]:

x= A(D)x+ B(D)u, - (39)

where X is the vector of the averaged state variables, ¥ is the vector of output vari-
ables, D is the duty factor of switch control signal, A(D) is the averaged state matrix,
B(D) is the input matrix, C(D) is the output matrix.

For circuits shown in Fig. 5 we obtain the following steady-state averaged state-space
equation:
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Assuming that all variables have two components: a running constant component (the
averaged value in the switching period Ts), which is marked by upper case letter, and a
perturbation one marked by lower case letter, which is covered by sign “*”:

u=U+u, x=X+%x, d=D+d .

The small signal state space equations are expressed as follows [19]:
d
dt

where A, = A[D,= 1,g=1], A,= A[D,=0,4= 0]

(X+ %)= Ax+ Bi+[(A, - A,)X+ (B)UJd , (41)

According to (41) Laplace transform of a small signal state-space equation is ex-
pressed as (42).

sk(s) = AX(s)+ Bis)+ (A, - A,)X+ (B)UJd(s) . (42)
After rearranging there is:
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where:
G - ﬁqd(}(s) 44 G - iqdo(s) 45
94054 ﬁqu(s 5 ( ) qd0g.d C,Z;(S) ( )

The transient-state transmittance Guuo;; is defined as:
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Fig. 8 represent the calculation and simulation test result of transient responses of
states variables for two different output frequencies 25 and 75Hz. In both cases the step
change of the input voltages from 50% to 100% of their nominal values in time moment
to and pulse duty factor equal D~=0.75 is presented.

In Fig. 9 transient responses of states variables at step change of the output frequency
from 25Hz to 50Hz, for summarized pulse duty factor equal D=0.75, are presented.

Figures from Fig. 8 to Fig. 9 show good consistency of calculation and simulation test
results. Obtained results confirm that small signal models can be useful for transient re-
sponses analysis of the described MRFC.
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Fig. 8. Transient responses of states variables at step change of the supply voltage: a) fi=25Hz,
b) fi =75Hz
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6 CONCLUSIONS

The steady state and small signal mathematical and circuit models of MRFC with
Cuk topology have been elaborated. Furthermore, the steady state characteristics and
transient responses of analysed circuit have been also investigated. Simulation test re-
sults, obtained for MRFC with idealized switches, confirmed that elaborated models can
be useful to steady state and transient responses of MRFC topology. The validity of pro-
posed models will be the subject of future investigations of presented MRFC with active
load and for closed control system as well.
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