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MODELLING  AND  ANALYSIS  OF  MATRIX-REAC-
TANCE  FREQUENCY  CONVERTER  BASED ON 
ĆUK  TOPOLOGY  BY  DQ0  TRANSFORMATION

This paper deals with a three-phase direct matrix-reactance frequency  
converter (MRFC) with Ćuk topology and includes a description of its  
topology and operation plus presentation of the results of an investiga-
tion of its properties. The static and dynamic characteristics of the pre-
sented converter under the control  strategy proposed by Venturini are  
fully analysed based on the basis of the circuit models development by the 
circuit DQ0 transformation. Various static converter characteristics such  
as voltage and current gain, phase of voltage transmittance and power  
factor are completely analysed. Transition characteristics are also anal-
ysed by a small-signal  model.  The usefulness of the models is verified  
through computer simulations with good agreements.

1 INTRODUCTION
In recent years, the direct matrix converters have received considerable attention as a 

competitor to the normally-used pulse width-modulated voltage-source inverter (PWM-
VSI). The real development of MC starts with work of [1]. As it is well known, the MC, 
compared to the PWM-VSI with diode rectification stage at the input provides sinu-
soidal input and output waveforms, bidirectional power flow, controllable input power 
factor, and more compact design [1]-[6].  One disadvantage of the MC is the voltage 
transfer ratio, which is limited to 0.5 of the input voltage [1] at linear voltage transfor-
mation, and to 0.866 or 1.053 at low-frequency load voltage deformations for space-vec-
tor or fictitious DC link control strategy concepts respectively [2]-[6]. In research [7] 
and [8] the general conception of a three-phase direct MRFC with buck-boost output 
voltage is presented, whereas in research [9] and [10], the conception of MRFC with 
Ćuk topology was presented. The topology of this MRFC is based on matrix reactance 
choppers (MRC) with load switches arranged as in MC. Such an approach gives the pos-
sibility to obtain a load output voltage greater than the input one.

In this paper we obtained the analytic expressions for the voltage and current gain, 
input power factor and phase of voltage transmittance of the MRFC based with Ćuk 
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topology, using DQ0 transformation technique [11]-[14]. By applying the circuit DQ0 
transformation,  the three-phase-balanced MRFC is  transformed into  a  simple  single-
phase circuit that does not contain a switch element. The switches are transformed to 
equivalent  transformers  whereas  voltage  sources  and  passive  components  are  trans-
formed into equivalent components.

2 DESCRIPTION OF PRESENTED SOLUTION
The schematic diagram of the main circuit  of the presented MRFC is shown in  

Fig. 1a [9], [10]. In this circuit a three-phase Ćuk MRC with load switches arranged as 
in MC is used. A description of the control strategy of the MRFC, in general form, is il-
lustrated in Fig. 1b. In each switching period  TS, in the time tS (switching time of the 
source switches Sjk, where j={a, b, c} is the name of the output phase, k={A, B, C} is the 
name of the input phase), 3 of 9 matrix switches, Sak, Sbk, Sck, are simultaneously closed 
and all source switches SS1, SS2, SS3 are closed at the same time. In time tL load switches 
SS1, SS2, SS3 are opened and all matrix switches are closed. A simplified view of the con-
trol strategy realization is depicted in Fig. 1c.
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Fig. 1. The MRFC with Ćuk  topology a) schematic diagram of main circuit, b) general form of  
control strategy description, c) exemplary time waveforms of the control signals for switches in  

one phase

Let the state function of the source switches be defined as (1) and assume that al-
lowed constraints of the source switches in the time tS is expressed by (2), only 27 out of 
29 work states of these switches are valid in this time tS, similarly as in the MC [1]-[6]. 
In a full switching period, in the time TS, (27+1) work states can occur in the presented 
circuit.
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Furthermore, on the basis of a classical control strategy [1] attributable to Venturini, as-
sume that there will be realized a control strategy making allowances for changes in the 
pulse duty factor of the source switch state function sjk expressed by:
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where  Dj=djA+djB+djC=tS/TS is the summarized pulse duty factor,  q =  Ujm/USjm - voltage 
gain of the source switches set Sjk (0 < q ≤ 0.5), ωm = ωL–ωS - setting value of difference 
between pulsations of the output and supply voltages.

3 CIRCUIT DQ0 TRANSFORMATION
Sinusoidal time-varying systems can be changed to time-invariant system by the DQ0 
transformation [11]-[14]. The DQ0 transformation of the variables is given as follows:
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where: xabc=[xa, xb, xc]T, xqd0=[xq, xd, x0]T, xq- forward (roating) phasor, xd- backwadr (roat-
ing) phasor, x0- zero-sequence component.

The circuit DQ0 transformation is obtained by the following procedures:
1) Partition of the circuit into basic subcircuits.
2) Transformation of each of the subcircuits into DQ0 equivalent circuits based on 

the DQ0 transformation equations 
3) Reconstruction of the transformed subcircuits by connecting the nodes of adja-

cent subcircuits.
We can divide the presented MRFC based on Ćuk topology depicted in Fig.1 into 

several fundamental subcircuits along the dotted lines indicated in Fig.2. After partition-
ing, we obtain eight subscircuits. As in the presented topology, there are two input and 
output work frequencies, we also have two transform matrix KS and KL expressed by (6) 
and (7) [15], [16].
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Fig. 2. Partitioning of MRFC for DQ0 transforms

For three-phase balanced voltage sources set (Part A), the DQ0 transformation pro-
cedure is as follows:
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where  uS is the vector of the voltage sources. Thus, the DQ0 transformed circuits of 
voltage sources set is shown in Fig. 3a.

Using basic principles from circuit theory, the source and load inductors (Part B and 
Part F) are modelled by equation (9) and (10):

LFabcLFabcFL ui = , (9) LSabcLSabcSL ui = , (10)

where  LF1=LF2=LF3=LF,  LS1=LS2=LS3=LS.  Application of (4)-(7) to (9) and (10) the DQ0 
transform of inductors can be formulated as:
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The circuit models are shown in Fig. 3b and Fig. 3c. The DQ0 “inductor” by real dy-
namic inductor LF (LS) in series with an imaginary static reactor ±jωSLF (±jωLLS) is repre-
sented. Since the voltage and current of the static reactor obeys Ohm’s law, the reactor is 
replaced by a lossless resistor symbol. 



For the source and load capacitors circuit (Part D and Part G), the differential equa-
tions are in the following form:
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•
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•
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where  CF1=CF2=CF3=CF,  CL1=CL2=CL3=CL.  Taking into account expressions (4)-(7) and 
(15), (16) the DQ0 transform of source and load capacitors is defined as follows:
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The DQ0 transformed circuit of source and load capacitors sets are shown in Fig. 3d 
and Fig. 3e, respectively. Similar as with inductors, the DQ0 “capacitors” are represent-
ed  by real  dynamic  capacitors  CF and  CL parallel  with an  imaginary static  reactors 
±1/(jωSCF), and ±1/(jωLCL).

Assuming that,  RL1=RL2=RL3=RL, the procedure of DQ0 transform of the resistor set 
(Part H) is as follows (Fig. 3f):

000 LqdLLqdLLLabcLLqd RR iiKuKu === . (21)

If, the switching function of source switches (Part C) are defined by (22), then the 
DQ0 transform of this switches is described as (23) (Fig. 3h):
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Fig. 3. DQ0 transformation of: a) source voltages, b) source inductors, c) load inductors, 
d) source capacitors, e) load capacitors, f) load resistors, g) matrix switches, h) sources switches



If, the switching function of matrix switches is defined by (3) then the DQ0 transfor-
mation of the nine-switch matrix (Part E) is given as follows [15]-[16] (Fig. 3g):
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The equivalent  DQ0 circuit  models of  the presented MRFC witch Ćuk topology 
(Fig. 1) are obtained as shown in Fig. 4 by rejoining of the DQ0 transformed subcircuits. 
Therefore, the three-phase circuit in Fig. 1 can be represented by three single-phase sub-
circuits for forward, backward and zero-sequence component.
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Fig. 4. DQ0 transformation of three phase MRFC based on Ćuk topology, a) forward sequence  

component, b) backward sequence component, c) zero-sequence component

Furthermore, assuming that initial phase of input voltages equal zero φ1=0 and sym-
metrical balanced three-phase circuit we obtain [11]-[16]:
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The equivalent circuits have been simplified from three circuits to one circuit, which is 
shown in Fig. 5.
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4 STEADY STATE ANALYSIS
The steady state model is obtained simply by eliminating the reactive elements. The 

inductors seem to be short and capacitors open, shown in Fig. 6. The steady state char-
acteristics can be obtained by considering the circuit model of the presented MRFC. For 
steady state analysis a single-phase circuit model is divided into four terminal networks 
(Fig. 6) [8],  [17].  With reference to Fig. 6 four-terminal chain equations in complex 
form can be written as (27)-(32).
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respectively, ACF, ACL chain matrix for the source and load capacitors respectively
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Applying the four-terminal network description method [8], [17], [18] we obtain:
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The characteristics of magnitude and phase of voltage transmittance, current trans-
mittance, and input power factor as functions of the load voltage setting frequency and 
summarized pulse duty factor  Dj, obtained by means of (35)-(38) are shown in Fig. 7. 
Circuit  parameters  are  as  follows:  US -230V/50Hz, fp=5kHz,  {LF1-LF3, LS1-LS3}-2mH, 
{CF1-CF3,  CL1-CL3}-20µF,  RL=10Ω. For purpose of comparison these characteristics are 
presented together with ones obtained by means of simulation investigations of the pre-
sented circuit with idealized switches (Fig. 1). The presented results have been obtained 
for matching conditions FjFjLjSjL CLCLR // ==  [8].

As is visible from Fig. 7 properties of the MRFC are strongly dependent on parame-
ters of the passive elements of the discussed circuit. The presented MRFC has the ad-
vantageous properties  in comparison with the MRFC based on buck-boost  and Zeta 
topology [10]. It has smaller “dispersion” of characteristics as a function of load voltage 
setting frequency. All characteristics almost ideally coincide for different frequencies of 
load voltage.
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Fig. 7. Steady state characteristics of MRPC based on Ćuk topology as a functions of the load  
voltage setting frequency and summarized pulse duty factor Dj: a) magnitude of voltage transmit-
tance, b) phase of voltage transmittance, c) magnitude of current transmittance, d) input power  

factor



5 TRANSIENT-STATE ANALYSIS
The equivalent circuit of transient-state is shown in Fig. 5. 
The steady-state averaged state-space equation is described as [19]:

( ) ( ) SuDD  BxAx +≈
•

, (39)

where  x  is the vector of the averaged state variables,  y  is the vector of output vari-
ables,  D is the duty factor of switch control signal, A(D) is the averaged state matrix, 
B(D) is the input matrix, C(D) is the output matrix.

For circuits shown in Fig. 5 we obtain the following steady-state averaged state-space 
equation:
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Assuming that all variables have two components: a running constant component (the 
averaged value in the switching period TS), which is marked by upper case letter, and a 
perturbation one marked by lower case letter, which is covered by sign “^”: 

uUu ˆ+= , xXx ˆ+= , dDd ˆ+= .
The small signal state space equations are expressed as follows [19]:

( ) ( ) ( )[ ] d
dt
d ˆˆˆˆ 21 UBXAAuBxAxX +−++≈+ ,        (41)

where ( )1,11 === qD jAA , ( )0,02 === qD jAA . 

According to (41)  Laplace  transform of  a small signal  state-space equation is  ex-
pressed as (42).

( ) ( ) ( ) ( )[ ] ( )sdssss ˆˆˆ)(ˆ 21 UBXAAuBxAx +−++= .                              (42)

After rearranging there is:
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The transient-state transmittance ux
G

ˆ,ˆ0qd  is defined as:
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Fig. 8 represent the calculation and simulation test  result  of transient  responses of 
states variables for two different output frequencies 25 and 75Hz. In both cases the step 
change of the input voltages from 50% to 100% of their nominal values in time moment 
t0 and pulse duty factor equal Dj=0.75 is presented. 

In Fig. 9 transient responses of states variables at step change of the output frequency 
from 25Hz to 50Hz, for summarized pulse duty factor equal Dj=0.75, are presented.

Figures from Fig. 8 to Fig. 9 show good consistency of calculation and simulation test 
results. Obtained results confirm that small signal models can be useful for transient re-
sponses analysis of the described MRFC.
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Fig. 8. Transient responses of states variables at step change of the supply voltage: a) fL=25Hz,  
b) fL =75Hz
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6 CONCLUSIONS
The steady state and small signal mathematical and circuit models of MRFC with 

Ćuk topology have been elaborated.  Furthermore, the steady state characteristics and 
transient responses of analysed circuit have been also investigated. Simulation test re-
sults, obtained for MRFC with idealized switches, confirmed that elaborated models can 
be useful to steady state and transient responses of MRFC topology. The validity of pro-
posed models will be the subject of future investigations of presented MRFC with active 
load and for closed control system as well.
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