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Models of the qZ-Converters 
 
 

Abstract. This paper presents enhanced static and small signal dynamic models of the 
unconventional qZ-converters family. Static models give consideration to impact of additional non 
shoot-through mode  with zero current separation diode, occurring in case of weak load current, and 
losses in dissipative components of the converter. Small signal dynamic models of the qZ-
converter allow to immediately evaluate the impact of its elements on control process. Presented 
here dependencies and results become helpful when designing qZ-converters that work in wide 
load change interval as well as when designing their controllers. 
 
Streszczenie. W artykule przedstawiono rozszerzone modele statyczne oraz małosygnałowy model 
dynamiczny niekonwencjonalnych   przekształtników typu qZ.  Modele statyczne uwzględniają 
zarówno tryb pracy z impulsowym prądem diody separującej w stanie aktywnym, występującym w 
przypadku małych obciążeń, jak również straty w poszczególnych elementach przekształtnika. 
Model małosygnałowy pozwala  ocenić wpływ tych elementów na proces sterowania. 
Przedstawione wyniki są pomocne przy projektowaniu qZ- przekształtników działających w 
szerokim zakresie zmian obciążenia oraz równiez projektowaniu  ich sterowników (Modele 
przekształtników typu qZ). 
 
Keywords: Power electronics, DC/AC converter, qZ-converters, impedance input network 
Słowa kluczowe: Energoelektronika, przekształtniki DC/AC, przekształtniki typu qZ, wejściowy 
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Introduction 

Inverters with variable voltage that have an input from a low voltage DC source (eg., 
a PV battery) are mostly realized on the basis of three topologies: a) PWM VSI + DC/DC 
boost converter without transformer; b) PWM VSI + DC/DC converter with transformer; c) 
PWM CSI. None of these solutions is fully satisfactory. A more interesting solution  
is a Z-source  converter  (ZSC)  [1],[2].  The distinguishing feature of this inverter is its 
input LC lattice network [3]. The ZSC circuit provides the single-stage voltage Buck-
Boost operation.  

Classic ZSC circuit, however, characterizes with impulse input current. This is 
inadmissible for many sources and in such cases application of large input filters is 
necessary. To a large extent this shortcoming is avoided in qZ-converter [4], synthesized 
as a result of transformation of ZCS circuit topology (Figure1). Based on such 
transformation one should notice the presence of input choke in the qZ-converter. The 
input choke buffers source current.  Moreover, voltage in one of the input circuits is lower 
than in case of ZSC topology. It is also possible to develop joint earthing of the  power 
source and a bus of transistorized mode. It is also easier to implement multilevel 
arrangements (especially three-level) cascade systems, which allow to increase voltage 
conversion ratio [5]. The above indicated characteristics draw more and more attention 
to qZ-converter systems and non-trivial solutions of  input LC lattice network [3],[5].   

This paper outlines the most significant problems in enhanced static and small signal 
dynamic models of the qZ-converters family. These models as well as their application 
are very important at the stage of designing and calculating their elements. 
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Fundamentals of Static Models  
Figure 2 illustrates the equivalent circuits of the qZ-converter for particular modes. 

Also, based on the circuits static characteristics for all working conditions can be easily 
derived. For this purpose, in order to simplify mathematic record but at the same time to 
maintain universality of the proposed ideas, one can assume that: 
 

21 CC = ;    21 LL =  
 
Even then, the qZ-converter becomes unsymmetrical. Thus: 
 

21 LL uu ≠    ;  21 CC uu ≠  
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Fig.1. Topological transformation from the Z-converter to qZ-converter 
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and assumed voltages:    

const11 == CC Uu ;  const22 == CC Uu ; const0 =U  

When the converter is in the shoot-through zero state for an interval (t0, t1) of the length 
T0, during a switching cycle T. From the equivalent circuit (Figure 2a): 
 

INCL UUu += 11  ;  22 CL Uu =  ; 0=OUTu  
 

When the converter is in the first active state for an interval (t1, t2) of the length T1 (when 
D-diode is conducting), during a switching cycle T. From the equivalent circuit (Figure 
2b): 

INCL UUu +−= 21 ;  12 CL Uu −= ; 21 CCOUT UUu +=  
 

When the converter is in the second active state for an interval (t2, t0+T) of the length T2 
(when D-diode is not conducting), during a switching cycle T. From the equivalent circuit 
(Figure 2c): 

01 =Lu , 02 =Lu ; 02 UUu COUT == . 
 
Based on the above dependencies and average voltages in cycle T 

 

011 == ∫
+Tt

t
LL dtuU ;   022 == ∫

+Tt

t
LL dtuU  

one obtains: 
( ) ( ) 021101 =−++= CININCL UUTUUTU  

 
011202 =−= CCL UTUTU  

 
Hence, below dependency is true: 
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In the case of a circuit with no active stages, that is when T2=0, then if we take into 
consideration that T0+T1=T : 
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where: D0=T0/T - shoot-through coefficient.  
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Static Models in DCM  
The analysis of qZ-converter with small loads and relatively low switching frequency 

and small inductance L requires more careful approach. With such parameters the 
converter is working in discontinuous conduction mode (DCM). In this case one must 
determine moment t2 or length T2 of the interval (t2, t0+T) when the diode stops to 
conduct (Figure 3). After deriving T2 or coefficient  D2=T2/T and transformation (1) one 
receives: 

(3a)                         INC U
DD
DDUU

20

20
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1
−−
−−

==               

and  

(3b)                      ( ) INCCOUT U
DD

DUUu
20

2
12max 21

1
−−

−
=+=  

Equations (3a) and (3b) illustrates also that transition from continuous conduction 
mode (CCM) to DCM increases output voltage. This effect can lead to destabilized work 
and work failure. One should note that DCM occurs only when currents iL1=iL2 in chokes 
L1=L2 decrease to ½I0 in the interval (t1, t0+T). From this moment till the end of switching 
cycle currents iL1=iL2=½I0. In universal case, when L1≠L2 to iL1+iL2=I0.  

 
a)  shoot-through mode (duration T0) 
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b) non shoot-through mode when iD>0 (duration  T1) 
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c) non shoot-through mode when iD=0 (duration  T2) 
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Fig.2. Operation modes of the qZ-converter in the switching period T= T0+T1+T2 
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Fig.3. Voltages and currents of the qZ-converter in the switching period T= T0+T1+T2 

 
In order to define the impact that parameters have on the converter DCM, one should 

determine average value of IL current iL1=iL2. Based on equivalent circuit diagram (Figure 
2) and shape of runs presented on figure 3, and dependencies (1), one obtains: 
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where f=1/T – switching frequency. 
Taking into account the above equation and  balance of input active power PIN and 

output P0:  
 

000 PVIUIP INLIN ===  
 
One can record: 
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Then, introducing the coefficient  
 
(6)                               INULfI02=γ   
 
Characteristic of voltage conversion ratio qZ-converter in DCM can be expressed by 
equation: 
 

(7)                            INU
D

U 2
0

0 2−γ
γ

=  

 
Comparing dependencies (2) and (7) an including (6) we can also define Basic 

parameters of qZ-converter, where no DCM occurs. These parameters are defined by 
equation: 
 

( ) fIUDDL IN 0
2
00 −>  

 
Figure 4 illustrates characteristics of voltage conversion ratio in γ parameter function 

for various values of shoot-through coefficient D0. It is not difficult to notice that in the 
DCM area the output voltage is elevated. Moreover, based on the equation (7), with 
regards to stability, operation close to the coefficient value is inadmissible:  
 

2
02D<γ  or, considering the formula (6), INULfID 00 >  

 
It is advisible to control one of the dependencies in the control system.  

 

 
Fig.4. Voltage conversion ratio, including CCM and DCM 

 
Static Model with Losses  

The information demonstrated above relate only to loss-less qZ-converter, and 
therefore evaluation of practical implementation of the arrangement is more difficult.  
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Fig.5.Simple equivalent qZ-converter circuit with take into account losses 
 

Figure 5 demonstrates simple equivalent diagram of qZ-converter with consideration 
given to losses in chokes and coupler S, controlled by resistances  , and losses in D-
diode controlled by voltage drop in the diode UD in the conducting state. Taking this 
arrangement into consideration and following the procedures similar to those in the 
previous chapter, for CCM one receives the following equations: 
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On the basis of these dependencies, after simple arithmetic conversions, the 
dependency describing  output voltage in the function of shoot-through coefficient D0 
takes: 
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Dependency (8) derived for parameters: 
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m113V30
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DS

LIN
Vrr
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close to those in reality and the dependency (2), are presented on figure 6. The 
comparison leads to a conclusion that in practice one must take into account maximum 
voltage conversion ratio U0/UIN ≤ 3÷4. 
 
Loss-less Dynamic Model   
Figure 7 illustrates tested dynamic model of the qZ-converter, which regards CCM, and 
in which the D-diode  (Figure 2) was replaced with switch NOT(S), synchronized with the 
switch S.  

 
Fig.6.  Output voltage vs. duty cycle D0   for  qZ-converter  without (a) and with (b) losses 
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Fig.7. Testing dynamic model of the qZ-converter 
 
This model is described by the following differential equations: 
- in shoot-through state (intervals of length D0·T) 
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- in active state (intervals of lenght D1·T) 
 

(10)                               
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where U=UIN, and also D0+D1=1 (since CCM is under consideration).  

At the same time [6] it is known, that equations describing a model of the converter:  
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can be recorded for small gains as:  
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Hence, taking into consideration matrixes A1, A2, B1, B2 included in the equations (9) and 
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Further, by applying Laplace transformation to the (11), one can write: 
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(12c)   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sdUUsuDsisZsuDsisL INCINc
~2~1~~22~

000000 ⋅−−⋅−+⋅−⋅−=⋅  
 

On the basis of derived dependencies (12) it is easy determine appropriate transfer 
functions. For example one can assume that load Z0 at working point  (I0, UIN, UC, D0, IL) 
and gains: 

( ) 0~ =siL  ;  ( ) 0~ =suc  ; 0~ =INu , 
 

one can evaluate dynamics of changes in output voltage qZ-converter with changes duty 
cycle D0±d. Transfer function describes this dynamic in case where: 
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Fig.8. Diagram Bode of the testing dynamic model of the qZ-converter. 
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Figure 8 presents diagram Bode determined on the basis of the equation (13). Run of 
the diagram for higher frequency draws attention as it indicates the need of careful 
selection of settings in order to assure stability of the arrangement and high control 
dynamics, without oscillations and need for significant readjustment. 
 
Conclusions 

Simulations results confirm the theoretically results of the paper.  However, no 
experiments under conditions comparable to theoretical model were conducted. 
According to authors, the results of simulation should be correct as they are confirmed in 
designing the laboratory model of qZ-converter. First of all, the presented results were 
used to select control settings and the main circuit parameters, so that DCM does not 
occur.  

In the laboratory model, under normal operational conditions of CCM, maximum 
achieved voltage conversion ratio was slightly higher than 3,5. This indicates that the 
quantitative characteristics of the effect of real losses of the converter’s components on 
its static parameters were well recognized.  

One should also note that start-up processes of the converter without feedback 
characterized with large oscillations and long transient process, which is also confirmed 
by bode diagram. 

One of the important future steps with regards to the project is the frequency analysis 
of a qZ-converters in a close circuit for different controllers. Further research will be 
directed toward more detailed inclusion of losses at both static and dynamic states. 
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